Celebrating 30 years of the MIDSPAN Studies

Phenotype and genotype studies across the generations John Connell

Strengths of population

Parents

- Long term follow up
- High event rate
- Excellent initial phenotyping
 Genetic material

Offspring

- Detailed phenotyping
- Future recording of events

Renfrew Paisley - Mortality

Diabetes mellitus confers increased CV risk in men and women

Diabetes Care, 2005, 28, 1588

Diabetes and hypertension combine to increase CV risk

Adjusted for - Age, BMI, Smoking, Cholesterol, Social status

Impact of weight on CV mortality

Renfrew Paisley Studies

- Complex interplay of cardiovascular risk factors
- Parental generation alone does not allow genetic contribution to be discerned

Development of offspring studies to allow:

- Heritability estimates of key CV phenotypes
- Exploration of familial clustering of disease
- Studies of specific candidate genes
- Focus on specific CV risk factors obesity; Blood pressure; ECG etc

Heritability of key CV and ECG variables

Phenotype	Heritability						
BMI	0.55±0.06*						
Waist/Hip ratio	0.39±0.07*						
Systolic BP	0.35±0.07						
Diastolic BP	0.53±0.06*						
ECG Phenotypes							
LVM (Rautaharju) gms	$0.55 \pm 0.07*$						
Cornell Voltage µV	0.32 ± 0.06*						
Sokolow Lyon µV	0.32 ± 0.06*						
12Lead μV	$0.44 \pm 0.06*$						
Sokolow Lyon product µV.s	$0.28 \pm 0.06*$						
Cornell Voltage product µV.s	$0.28 \pm 0.06*$						
12 Lead product µV.s	0.36 ± 0.07*						

Good evidence from family approach that several variables are inherited

What are the key genes that lead to this?

Initial candidates studies focus on known pathways

renin/angiotensin/aldosterone system adrenoreceptors signalling pathways involved in CV regulation

Is one form of the gene inherited more often than another in relation to a particular cardiovascular risk factor ?

Studies on G-protein coupling; βadrenoreceptor; angiotensin converting enzyme and aldosterone synthase

	GNB3		B1AR		ACE		SF1	
N / familiesª	610/244		645/245		703/283		610/244	
	Z	р	Z	р	Z	р	Z	р
Systolic BP	-0.61	0.54	-1.75	0.079	-1.03	0.30	-0.61	0.54
Diastolic BP	-0.62	0.53	-1.17	0.24	-0.67	0.49	-0.62	0.53
BMI	0.36	0.72	-1.23	0.22	0.07	0.94	0.36	0.71
LV mass	1.3	0.19	-0.72	0.47	-0.09	0.93	1.3	0.19
12Lead_V	-0.25	0.80	2.07	0.03	1.06	0.28	-0.25	0.80

No individual gene explains variation in measurements in population ? Combinations of genetic factors may be more informative

Future use of resource

- Exploration of other candidate genes
- Better use of family structure and two generation design
- Alternative ways of analysing data use of genetic information to stratify population
- Development of alternative phenotypes eg; focus on central obesity
- Future utilisation of morbidity and mortality data

Summary

- Highly informative and well documented population
- Family structure allows social, environmental and genetic contributions to risk to be identified
- Genetic information needs to be fully exploited; very powerful tool for future research

Acknowledgements

G Watt AF Dominiczak M Upton D Hole S Padmanabhan N Sattar P McFarlane

Chief Scientist Office British Heart Foundation Wellcome Trust Medical Research Council